Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.430
Filtrar
1.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830444

RESUMO

A dome-shaped elastic poly(l-lactide-co-caprolactone) (PLCL) scaffold with a channel and pore structure was fabricated by a combinative method of 3D printing technology and the gel pressing method (13 mm in diameter and 6.5 mm in thickness) for patient-specific regeneration. The PLCL scaffold was combined with adipose decellularized extracellular matrix (adECM) and heart decellularized extracellular matrix (hdECM) hydrogels and human adipose-derived stem cells (hADSCs) to promote adipogenesis and angiogenesis. These scaffolds had mechanical properties similar to those of native adipose tissue for improved tissue regeneration. The results of the in vitro real-time PCR showed that the dECM hydrogel mixture induces adipogenesis. In addition, the in vivo study at 12 weeks demonstrated that the tissue-engineered PLCL scaffolds containing the hydrogel mixture (hdECM/adECM (80:20)) and hADSCs promoted angiogenesis and adipose tissue formation, and suppressed apoptosis. Therefore, we expect that our constructs will be clinically applicable as material for the regeneration of patient-specific large-sized adipose tissue.


Assuntos
Adipogenia/efeitos dos fármacos , Tecido Adiposo/crescimento & desenvolvimento , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração/genética , Tecido Adiposo/transplante , Animais , Apoptose/efeitos dos fármacos , Matriz Extracelular Descelularizada/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Neovascularização Fisiológica/genética , Poliésteres/farmacologia , Impressão Tridimensional , Regeneração/efeitos dos fármacos
2.
PLoS Med ; 18(9): e1003751, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499663

RESUMO

BACKGROUND: The potential benefits of gaining body muscle for cardiovascular disease (CVD) susceptibility, and how these compare with the potential harms of gaining body fat, are unknown. We compared associations of early life changes in body lean mass and handgrip strength versus body fat mass with atherogenic traits measured in young adulthood. METHODS AND FINDINGS: Data were from 3,227 offspring of the Avon Longitudinal Study of Parents and Children (39% male; recruited in 1991-1992). Limb lean and total fat mass indices (kg/m2) were measured using dual-energy X-ray absorptiometry scans performed at age 10, 13, 18, and 25 y (across clinics occurring from 2001-2003 to 2015-2017). Handgrip strength was measured at 12 and 25 y, expressed as maximum grip (kg or lb/in2) and relative grip (maximum grip/weight in kilograms). Linear regression models were used to examine associations of change in standardised measures of these exposures across different stages of body development with 228 cardiometabolic traits measured at age 25 y including blood pressure, fasting insulin, and metabolomics-derived apolipoprotein B lipids. SD-unit gain in limb lean mass index from 10 to 25 y was positively associated with atherogenic traits including very-low-density lipoprotein (VLDL) triglycerides. This pattern was limited to lean gain in legs, whereas lean gain in arms was inversely associated with traits including VLDL triglycerides, insulin, and glycoprotein acetyls, and was also positively associated with creatinine (a muscle product and positive control). Furthermore, this pattern for arm lean mass index was specific to SD-unit gains occurring between 13 and 18 y, e.g., -0.13 SD (95% CI -0.22, -0.04) for VLDL triglycerides. Changes in maximum and relative grip from 12 to 25 y were both positively associated with creatinine, but only change in relative grip was also inversely associated with atherogenic traits, e.g., -0.12 SD (95% CI -0.18, -0.06) for VLDL triglycerides per SD-unit gain. Change in fat mass index from 10 to 25 y was more strongly associated with atherogenic traits including VLDL triglycerides, at 0.45 SD (95% CI 0.39, 0.52); these estimates were directionally consistent across sub-periods, with larger effect sizes with more recent gains. Associations of lean, grip, and fat measures with traits were more pronounced among males. Study limitations include potential residual confounding of observational estimates, including by ectopic fat within muscle, and the absence of grip measures in adolescence for estimates of grip change over sub-periods. CONCLUSIONS: In this study, we found that muscle strengthening, as indicated by grip strength gain, was weakly associated with lower atherogenic trait levels in young adulthood, at a smaller magnitude than unfavourable associations of fat mass gain. Associations of muscle mass gain with such traits appear to be smaller and limited to gains occurring in adolescence. These results suggest that body muscle is less robustly associated with markers of CVD susceptibility than body fat and may therefore be a lower-priority intervention target.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Adiposidade , Doenças Cardiovasculares/etiologia , Força da Mão , Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Absorciometria de Fóton , Tecido Adiposo/diagnóstico por imagem , Adolescente , Desenvolvimento do Adolescente , Adulto , Fatores Etários , Biomarcadores/sangue , Fatores de Risco Cardiometabólico , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Criança , Desenvolvimento Infantil , Inglaterra , Feminino , Humanos , Lipídeos/sangue , Estudos Longitudinais , Masculino , Músculo Esquelético/diagnóstico por imagem , Fatores de Proteção , Medição de Risco , Adulto Jovem
3.
Am J Physiol Endocrinol Metab ; 321(5): E581-E591, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459218

RESUMO

This study determined if a perturbation in in utero adipogenesis leading to later life adipose tissue (AT) dysfunction underlies programming of cardiometabolic risk in offspring born to dams with metabolic dysfunction. Female mice heterozygous for the leptin receptor deficiency (Hetdb) had 2.4-fold higher prepregnancy fat mass and in late gestation had higher plasma insulin and triglycerides compared with wild-type (Wt) females (P < 0.05). To isolate the role of the intrauterine milieu, wild-type (Wt) offspring from each pregnancy were studied. Differentiation potential in isolated progenitors and cell size distribution analysis revealed accelerated adipogenesis in Wt pups born to Hetdb dams, accompanied by a higher accumulation of neonatal fat mass. In adulthood, whole body fat mass by NMR was higher in male (69%) and female (20%) Wt offspring born to Hetdb versus Wt pregnancies, along with adipocyte hypertrophy and hyperlipidemia (all P < 0.05). Lipidomic analyses by gas chromatography revealed an increased lipogenic index (16:0/18:2n6) after high-fat/fructose diet (HFFD). Postprandial insulin, ADIPO-IR, and ex vivo AT lipolytic responses to isoproterenol were all higher in Wt offspring born to Hetdb dams (P < 0.05). Intrauterine metabolic stimuli may direct a greater proportion of progenitors toward terminal differentiation, thereby predisposing to hypertrophy-induced adipocyte dysfunction.NEW & NOTEWORTHY This study reveals that accelerated adipogenesis during the perinatal window of adipose tissue development predisposes to later life hypertrophic adipocyte dysfunction, thereby compromising the buffering function of the subcutaneous depot.


Assuntos
Adipogenia , Tecido Adiposo/metabolismo , Fatores de Risco Cardiometabólico , Doenças Metabólicas/metabolismo , Adipócitos/ultraestrutura , Tecido Adiposo/embriologia , Tecido Adiposo/crescimento & desenvolvimento , Animais , Tamanho Celular , Dieta Hiperlipídica , Feminino , Frutose/farmacologia , Hiperlipidemias/genética , Insulina/sangue , Lipidômica , Masculino , Doenças Metabólicas/patologia , Camundongos , Gravidez , Receptores para Leptina/genética , Células-Tronco , Triglicerídeos/sangue
4.
Int J Obes (Lond) ; 45(11): 2490-2498, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34331002

RESUMO

BACKGROUND: To examine the associations of total and regional adiposity with metabolic and cardiovascular disease (CVD) risk markers. METHODS: This cross-sectional study included 1080 (53.8% men, aged 39-44 years) individuals from South India. Anthropometry (height, weight, waist and hip circumference), body composition assessment using dual-energy X-ray absorptiometry (DXA), blood pressure (BP), and plasma glucose, insulin and lipids were measured. Regression analysis was used to examine associations of standardized fat measurements with type 2 diabetes (T2D), insulin resistance (IR), hypertension and hypertriglyceridemia and continuous measurements of BP, glucose, insulin, HOMA-IR and lipids. Contour plots were constructed to visualize the differential effect of upper and lower fat depots. RESULTS: DXA-measured fat depots were positively associated with metabolic and CVD risk markers. After adjusting for fat mass index, upper body fat remained positively, while lower body fat was negatively associated with risk markers. A one standard deviation (SD) increase in android fat showed higher odds ratios (ORs) for T2D (6.59; 95% CI 3.17, 13.70), IR (4.68; 95% CI 2.31, 9.50), hypertension (2.57; 95% CI 1.56, 4.25) and hypertriglyceridemia (6.39; 95% CI 3.46, 11.90) in men. A 1 SD increase in leg fat showed a protective effect with ORs for T2D (0.42; 95% CI 0.24, 0.74), IR (0.31; 95% CI 0.17, 0.57) and hypertriglyceridemia (0.61; 95% CI 0.38, 0.98). The magnitude of the effect was greater with DXA-measured fat compared with anthropometry. CONCLUSION: At any level of total body fat, upper and lower body fat depots demonstrate opposite risk associations with metabolic and CVD risk markers in Asian Indians.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Fatores de Risco de Doenças Cardíacas , Doenças Metabólicas/fisiopatologia , Tecido Adiposo/fisiopatologia , Adulto , Índice de Massa Corporal , Estudos Transversais , Feminino , Humanos , Índia , Masculino , Doenças Metabólicas/metabolismo
5.
Acta Biochim Pol ; 68(2): 287-292, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33974793

RESUMO

The current research aimed to evaluate the effects of dietary inclusion of wood vinegar on growth performance, nutrient digestibility, and meat quality of grower-finisher pigs. In total, 132 crossbred ({Landrace × Yorkshire × Duroc}) grower-finisher pigs with an initial average body weight 30.48±4.23 kg (11 replications/treatment; 4 pigs/pen) were used in a 16-week trial. Based on the body weight and sex the pigs were randomly assigned to three treatments. Dietary treatments consisted of the basal diet (CON) or the basal diet supplemented with 0.05% and 0.1% wood vinegar. The inclusion of dietary wood vinegar supplementation significantly improved the body weight gain (BWG) and average daily gain (ADG) (P=0.0521; 0.043) of pigs at week 16. The total track nutrient digestibility of dry matter and nitrogen was linearly increased in pigs fed with an increased amount of wood vinegar. In addition, dietary supplementation of wood vinegar linearly improved longissimus muscle area, yellowness (b*) of the meat color, and carcass weight (P<0.05) and a tendency in linear reduction was observed for water holding capacity (P=0.068), and drip loss at d5 and d7 (P=0.091, 0.069). However, there was no significant difference found for lean meat percentage and backfat thickness in this experiment. In summary, dietary inclusion of wood vinegar supplementation enhanced growth performance and total track digestibility of nutrients and had no effects on lean meat percentage and backfat thickness of grower-finisher pigs.


Assuntos
Ração Animal/análise , Digestão , Carne/análise , Suínos/crescimento & desenvolvimento , Terpenos/administração & dosagem , Ácido Acético/administração & dosagem , Tecido Adiposo/crescimento & desenvolvimento , Animais , Dieta/métodos , Suplementos Nutricionais , Feminino , Masculino , Nutrientes , Aumento de Peso
6.
Cell Stem Cell ; 28(10): 1790-1804.e8, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34010627

RESUMO

The role of heterochromatin in cell fate specification during development is unclear. We demonstrate that loss of the lysine 9 of histone H3 (H3K9) methyltransferase G9a in the mammary epithelium results in de novo chromatin opening, aberrant formation of the mammary ductal tree, impaired stem cell potential, disrupted intraductal polarity, and loss of tissue function. G9a loss derepresses long terminal repeat (LTR) retroviral sequences (predominantly the ERVK family). Transcriptionally activated endogenous retroviruses generate double-stranded DNA (dsDNA) that triggers an antiviral innate immune response, and knockdown of the cytosolic dsDNA sensor Aim2 in G9a knockout (G9acKO) mammary epithelium rescues mammary ductal invasion. Mammary stem cell transplantation into immunocompromised or G9acKO-conditioned hosts shows partial dependence of the G9acKO mammary morphological defects on the inflammatory milieu of the host mammary fat pad. Thus, altering the chromatin accessibility of retroviral elements disrupts mammary gland development and stem cell activity through both cell-autonomous and non-autonomous mechanisms.


Assuntos
Retrovirus Endógenos , Histona-Lisina N-Metiltransferase , Glândulas Mamárias Animais/crescimento & desenvolvimento , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/imunologia , Animais , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Feminino , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Imunidade , Glândulas Mamárias Animais/imunologia
7.
Genes Dev ; 35(9-10): 713-728, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33888555

RESUMO

MED1 often serves as a surrogate of the general transcription coactivator complex Mediator for identifying active enhancers. MED1 is required for phenotypic conversion of fibroblasts to adipocytes in vitro, but its role in adipose development and expansion in vivo has not been reported. Here, we show that MED1 is not generally required for transcription during adipogenesis in culture and that MED1 is dispensable for adipose development in mice. Instead, MED1 is required for postnatal adipose expansion and the induction of fatty acid and triglyceride synthesis genes after pups switch diet from high-fat maternal milk to carbohydrate-based chow. During adipogenesis, MED1 is dispensable for induction of lineage-determining transcription factors (TFs) PPARγ and C/EBPα but is required for lipid accumulation in the late phase of differentiation. Mechanistically, MED1 controls the induction of lipogenesis genes by facilitating lipogenic TF ChREBP- and SREBP1a-dependent recruitment of Mediator to active enhancers. Together, our findings identify a cell- and gene-specific regulatory role of MED1 as a lipogenesis coactivator required for postnatal adipose expansion.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Lipogênese/genética , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/embriologia , Animais , Células Cultivadas , Dieta , Camundongos , Ligação Proteica/genética
8.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919985

RESUMO

Tissue engineering strategies promote bone regeneration for large bone defects by stimulating the osteogenesis route via intramembranous ossification in engineered grafts, which upon implantation are frequently constrained by insufficient integration and functional anastomosis of vasculature from the host tissue. In this study, we developed a hybrid biomaterial incorporating decellularized cartilage extracellular matrix (CD-ECM) as a template and silk fibroin (SF) as a carrier to assess the bone regeneration capacity of bone marrow-derived mesenchymal stem cells (hBMSC's) via the endochondral ossification (ECO) route. hBMSC's were primed two weeks for chondrogenesis, followed by six weeks for hypertrophy onto hybrid CD-ECM/SF or SF alone scaffolds and evaluated for the mineralized matrix formation in vitro. Calcium deposition biochemically determined increased significantly from 4-8 weeks in both SF and CD-ECM/SF constructs, and retention of sGAG's were observed only in CD-ECM/SF constructs. SEM/EDX revealed calcium and phosphate crystal localization by hBMSC's under all conditions. Compressive modulus reached a maximum of 40 KPa after eight weeks of hypertrophic induction. µCT scanning at eight weeks indicated a cloud of denser minerals in groups after hypertrophic induction in CD-ECM/SF constructs than SF constructs. Gene expression by RT-qPCR revealed that hBMSC's expressed hypertrophic markers VEGF, COL10, RUNX2, but the absence of early hypertrophic marker ChM1 and later hypertrophic marker TSBS1 and the presence of osteogenic markers ALPL, IBSP, OSX under all conditions. Our data indicate a new method to prime hBMSC'S into the late hypertrophic stage in vitro in mechanically stable constructs for ECO-mediated bone tissue regeneration.


Assuntos
Regeneração Óssea/genética , Condrogênese/genética , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Osso e Ossos/metabolismo , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Diferenciação Celular/genética , Condrócitos/metabolismo , Matriz Extracelular/genética , Fibroínas/química , Fibroínas/genética , Humanos , Osteogênese/genética , Tecidos Suporte
9.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921246

RESUMO

Previously, we developed a novel, needle-free waterjet (WJ) technology capable of injecting viable cells by visual guided cystoscopy in the urethral sphincter. In the present study, we aimed to investigate the effect of WJ technology on cell viability, surface markers, differentiation and attachment capabilities, and biomechanical features. Porcine adipose tissue-derived stromal cells (pADSCs) were isolated, expanded, and injected by WJ technology. Cell attachment assays were employed to investigate cell-matrix interactions. Cell surface molecules were analyzed by flow cytometry. Cells injected by Williams Needle (WN), normal cannula, or not injected cells served as controls. Biomechanical properties were assessed by atomic force microscopy (AFM). pADSCs injected by the WJ were viable (85.9%), proliferated well, and maintained their in vitro adipogenic and osteogenic differentiation capacities. The attachment of pADSCs was not affected by WJ injection and no major changes were noted for cell surface markers. AFM measurements yielded a significant reduction of cellular stiffness after WJ injections (p < 0.001). WJ cell delivery satisfies several key considerations required in a clinical context, including the fast, simple, and reproducible delivery of viable cells. However, the optimization of the WJ device may be necessary to further reduce the effects on the biomechanical properties of cells.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Tecido Adiposo/crescimento & desenvolvimento , Animais , Proliferação de Células/genética , Sobrevivência Celular/genética , Humanos , Injeções , Osteogênese/genética , Células Estromais/citologia , Células Estromais/transplante , Suínos
10.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809175

RESUMO

A flexible and bioactive scaffold for adipose tissue engineering was fabricated and evaluated by dual nozzle three-dimensional printing. A highly elastic poly (L-lactide-co-ε-caprolactone) (PLCL) copolymer, which acted as the main scaffolding, and human adipose tissue derived decellularized extracellular matrix (dECM) hydrogels were used as the printing inks to form the scaffolds. To prepare the three-dimensional (3D) scaffolds, the PLCL co-polymer was printed with a hot melting extruder system while retaining its physical character, similar to adipose tissue, which is beneficial for regeneration. Moreover, to promote adipogenic differentiation and angiogenesis, adipose tissue-derived dECM was used. To optimize the printability of the hydrogel inks, a mixture of collagen type I and dECM hydrogels was used. Furthermore, we examined the adipose tissue formation and angiogenesis of the PLCL/dECM complex scaffold. From in vivo experiments, it was observed that the matured adipose-like tissue structures were abundant, and the number of matured capillaries was remarkably higher in the hydrogel-PLCL group than in the PLCL-only group. Moreover, a higher expression of M2 macrophages, which are known to be involved in the remodeling and regeneration of tissues, was detected in the hydrogel-PLCL group by immunofluorescence analysis. Based on these results, we suggest that our PLCL/dECM fabricated by a dual 3D printing system will be useful for the treatment of large volume fat tissue regeneration.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Hidrogéis/síntese química , Regeneração/genética , Engenharia Tecidual , Tecido Adiposo/química , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Elasticidade/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Polímeros/síntese química , Polímeros/farmacologia , Impressão Tridimensional , Tecidos Suporte/química , Cicatrização/efeitos dos fármacos
11.
Sci Rep ; 11(1): 6949, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772049

RESUMO

Excessive expansion of adipose tissue in obesity typically leads to overflow and accumulation of lipids in other tissues, causing fatty liver disease and atherosclerosis. The intracellular protein, phosphoprotein enriched in astrocytes (PEA)-15 has been linked to metabolic disease but its role in lipid storage has not been examined. To delineate the role of PEA-15 in adipose tissue, we placed PEA-15-/- mice on a high fat diet. These mice developed increased body weight and greater white adipose tissue expansion compared to high fat diet-fed wild type mice. This was due to increased adipocyte cell size in PEA-15-/- mice consistent with greater lipid storage capacity. Surprisingly, PEA-15-/- mice exhibited improvements in whole body insulin sensitivity, lower hepatic weight and decreased serum triglycerides indicating a protective phenotype. To determine effects on atherosclerosis, PEA-15-/- mice were crossed with the ApoE-/- mice on a high fat diet. Strikingly, these mice were protected from atherosclerosis and had less hepatic lipid accumulation despite increased adiposity. Therefore, we reveal for the first time that PEA-15 plays a novel role in regulating the expansion of adipose tissue. Decreasing PEA-15 expression increases the sequestering of lipids in adipose tissue, protecting other tissues in obesity, thereby improving metabolic health.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/crescimento & desenvolvimento , Adiposidade/genética , Proteínas Reguladoras de Apoptose/genética , Obesidade/patologia , Células 3T3 , Adiposidade/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Astrócitos/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Linhagem Celular , Dieta Hiperlipídica , Resistência à Insulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/metabolismo , Triglicerídeos/sangue
12.
Sci Rep ; 11(1): 6230, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737614

RESUMO

The purpose of subject was to explore the optimum protein requirement of juvenile grouper (Epinephelus coioides). In the test, 450 juveniles with an average weight (10.02 ± 0.22) g were randomly divided into six groups with triplicate, and were fed with 350, 400, 450, 500, 550 and 600 g/kg iso-lipid test diet twice 1 day for 8 weeks, respectively. The results showed that: (1) With the increase of protein level, the body weight gain rate and specific growth rate first increased and then reduced, while the feed coefficient rate first decreased and then increased, while the protein efficiency significantly decreased (P < 0.05). (2) With the increase of protein level, the condition factor, hepaticsomatic index and visceralsomatic index significantly reduced (P < 0.05). (3) With the increase of protein level, the crude protein content of whole fish and muscle gradually increased, while the crude lipid content gradually decreased. (4) High-protein diet (550-600 g/kg) significantly increased the plasma total protein content and decreased the triglyceride content of orange-spotted grouper (P < 0.05). (5) Compared with the 350 g/kg group, 500, 550, 600 g/kg groups significantly increased the activities of glutamic-pyruvic transaminase and glutamic oxaloacetic transaminase in liver (P < 0.05). (6) With the increase of protein level, the protease activity of intestine first increased and then decreased, and reached the maximum at the protein level of 500 g/kg, while lipase and amylase decreased significantly (P < 0.05). (7) The activities of acid phosphatase, superoxide dismutase and lysozyme in liver increased first and then decreased with the increase of protein level, and reached the maximum in the 400 g/kg protein group. According to the analysis specific growth rate, the optimum protein level of juvenile orange-spotted grouper is 521.84 g/kg.


Assuntos
Ração Animal/análise , Proteínas na Dieta/administração & dosagem , Proteínas de Peixes/genética , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Perciformes/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/crescimento & desenvolvimento , Alanina Transaminase/genética , Alanina Transaminase/metabolismo , Amilases/genética , Amilases/metabolismo , Animais , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Proteínas de Peixes/metabolismo , Expressão Gênica , Intestinos/crescimento & desenvolvimento , Lipase/genética , Lipase/metabolismo , Fígado/metabolismo , Muramidase/genética , Muramidase/metabolismo , Músculos/efeitos dos fármacos , Músculos/fisiologia , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Perciformes/genética , Perciformes/crescimento & desenvolvimento , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Triglicerídeos/metabolismo , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/fisiologia
13.
Exp Cell Res ; 401(2): 112548, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33675805

RESUMO

Having healthy adipose tissue is essential for metabolic health, as excessive adipose tissue in the body can cause its dysregulation and driving chronic metabolic diseases. Protein kinase D1 (PKD1) is considered to be a key kinase in signal transduction, which regulates multiple cellular functions, but its physiological functions in adipose are still not fully understood. This study aimed at elucidating the function of adipocyte PKD1 on lipogenesis. From RNA-Sequencing data, we found that the fatty acid biosynthesis pathway in white adipose tissue lacking PKD1 was significantly affected. Critical rate-limiting enzymes for de novo lipogenesis in adipocytes, such as FASN, ACCα, and SCD1, were significantly repressed after deleting PKD1 in vivo and in vitro. Further studies revealed that blockade of PKD1 significantly increased phosphorylation of SREBP1c at serine 372 site. Co-immunoprecipitation analysis showed that PKD1 interacts with SREBP1c in vitro and in vivo. Importantly, overexpression of SREBP1c reversed the inhibition of FASN and ACCα expression caused by PKD1 silencing. Together, adipocyte PKD1 promotes de novo lipogenesis via SREBP1c-dependent manner in visceral white adipose tissue and might provide a new target for the development of anti-obesity therapies.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Lipogênese/genética , Proteína Quinase C/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Tecido Adiposo/metabolismo , Animais , Inativação Gênica , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Transdução de Sinais/genética
14.
Genes (Basel) ; 12(2)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572831

RESUMO

As the chick transitions from embryonic to post-hatching life, its metabolism must quickly undergo a dramatic switch in its major energy source. The chick embryo derives most of its energy from the yolk, a lipid-rich/carbohydrate-poor source. Upon hatching, the chick's metabolism must then be able to utilize a lipid-poor/carbohydrate-rich source (feed) as its main form of energy. We recently found that a number of hepatically-expressed microRNAs (miRNAs) help facilitate this shift in metabolic processes in the chick liver, the main site of lipogenesis. While adipose tissue was initially thought to mainly serve as a lipid storage site, it is now known to carry many metabolic, endocrine, and immunological functions. Therefore, it would be expected that adipose tissue is also an important factor in the metabolic switch. To that end, we used next generation sequencing (NGS) and real-time quantitative PCR (RT-qPCR) to generate miRNome and transcriptome signatures of the adipose tissue during the transition from late embryonic to early post-hatch development. As adipose tissue is well known to produce inflammatory and other immune factors, we used SPF white leghorns to generate the initial miRNome and transcriptome signatures to minimize complications from external factors (e.g., pathogenic infections) and ensure the identification of bona fide switch-associated miRNAs and transcripts. We then examined their expression signatures in the adipose tissue of broilers (Ross 708). Using E18 embryos as representative of pre-switching metabolism and D3 chicks as a representative of post-switching metabolism, we identified a group of miRNAs which work concordantly to regulate a diverse but interconnected group of developmental, immune and metabolic processes in the adipose tissue during the metabolic switch. Network mapping suggests that during the first days post-hatch, despite the consumption of feed, the chick is still heavily reliant upon adipose tissue lipid stores for energy production, and is not yet efficiently using their new energy source for de novo lipid storage. A number of core master regulatory pathways including, circadian rhythm transcriptional regulation and growth hormone (GH) signaling, likely work in concert with miRNAs to maintain an essential balance between adipogenic, lipolytic, developmental, and immunological processes in the adipose tissue during the metabolic switch.


Assuntos
Galinhas/genética , Desenvolvimento Embrionário/genética , Lipogênese/genética , MicroRNAs/genética , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Animais , Embrião de Galinha , Galinhas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , MicroRNAs/classificação , Transdução de Sinais/genética , Transcriptoma/genética
15.
Sci Rep ; 11(1): 2999, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542247

RESUMO

This paper presents progress in the automation of cell and tissue systems and attempts toward the in situ feedback control of organs-on-a-chip. Our study aims to achieve feedback control of a cell and tissue system by a personal computer (PC), whereas most studies on organs-on-a-chip focus on the automation of status monitoring. The implemented system is composed of subsystems including automated culture, stimulation, and monitoring. The monitoring function provides imaging as well as sampling and dispensing in combination with an external analyzer. Individual subsystems can be combined accordingly. First, monitoring of skeletal muscle (SM) and adipose tissues using this system was demonstrated. The highlight of this paper is the application of the system to the feedback control of the lipid droplet (LD) size, where biochemical stimulation using insulin and adrenaline is controlled by a PC according to the obtained LD imaging data. In this study, the system demonstrated its function of maintaining the desired size of LDs. Our results expand the possibility of PC-controllable cell and tissue systems by addressing the challenge of feedback control of organs-on-a-chip. The PC-controllable cell and tissue systems will contribute to living systems-on-a-chip based on homeostasis phenomena involving interactions between organs or tissues.


Assuntos
Automação/métodos , Técnicas de Cultura de Células/métodos , Dispositivos Lab-On-A-Chip , Técnicas de Cultura de Órgãos/métodos , Técnicas de Cultura de Tecidos/métodos , Tecido Adiposo/crescimento & desenvolvimento , Retroalimentação Fisiológica , Humanos , Músculo Esquelético/crescimento & desenvolvimento
16.
Genet Sel Evol ; 53(1): 13, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549052

RESUMO

BACKGROUND: Feed accounts for about 70% of the total cost of poultry meat production. Residual feed intake (RFI) has become the preferred measure of feed efficiency because it is phenotypically independent of growth rate and body weight. In this study, our aim was to estimate genetic parameters and identify quantitative trait loci (QTL) for feed efficiency in 3314 purebred broilers using a genome-wide association study. Broilers were genotyped using a custom 55 K single nucleotide polymorphism (SNP) array. RESULTS: Estimates of genomic heritability for seven growth and feed efficiency traits, including body weight at 28 days of age (BW28), BW42, average daily feed intake (ADFI), RFI, and RFI adjusted for weight of abdominal fat (RFIa), ranged from 0.12 to 0.26. Eleven genome-wide significant SNPs and 15 suggestively significant SNPs were detected, of which 19 clustered around two genomic regions. A region on chromosome 16 (2.34-2.66 Mb) was associated with both BW28 and BW42, and the most significant SNP in this region, AX_101003762, accounted for 7.6% of the genetic variance of BW28. The other region, on chromosome 1 (91.27-92.43 Mb) was associated with RFI and ADFI, and contains the NSUN3 and EPHA6 as candidate genes. The most significant SNP in this region, AX_172588157, accounted for 4.4% of the genetic variance of RFI. In addition, a genomic region containing the gene AGK on chromosome 1 was found to be associated with RFIa. The NSUN3 and AGK genes were found to be differentially expressed in breast muscle, thigh muscle, and abdominal fat between male broilers with high and low RFI. CONCLUSIONS: We identified QTL regions for BW28 and BW42 (spanning 0.32 Mb) and RFI (spanning 1.16 Mb). The NSUN3, EPHA6, and AGK were identified as the most likely candidate genes for these QTL. These genes are involved in mitochondrial function and behavioral regulation. These results contribute to the identification of candidate genes and variants for growth and feed efficiency in poultry.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Galinhas/genética , Polimorfismo de Nucleotídeo Único , Produtos Avícolas/normas , Locos de Características Quantitativas , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Ração Animal , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas/crescimento & desenvolvimento , Feminino , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo
17.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430047

RESUMO

We aimed to determine whether an experimental model of hyperthyroidism could alter the function of sympathetic and nitrergic components of mesenteric innervation. For this purpose, male Wistar rats were divided into (1) control rats (CT) and (2) rats infused with L-Thyroxine (HT). Body weight gain and adipose tissue accumulation were lower in HT rats, while systolic blood pressure and citrate synthase activity in the soleus muscle were increased by HT. In segments from the superior mesenteric artery, the application of an electrical field stimulation (EFS) induced a vasoconstrictor response, which was lower in arteries from HT animals. The alpha-adrenoceptor antagonist phentolamine diminished EFS-induced vasoconstriction to a lower extent in HT arteries, while the purinergic receptor antagonist suramin reduced contractile response to EFS only in segments from CT. In line with this, noradrenaline release, tyrosine hydroxylase expression and activation and dopamine ß hydroxylase expression were diminished in HT. The unspecific nitric oxide synthase (NOS) inhibitor L-NAME increased EFS-induced vasoconstriction more markedly in segments from HT rats. NO release was enhanced in HT, probably due to an enhancement in neuronal NOS activity, in which a hyperactivation of both PKC and PI3K-AKT signaling pathways might play a relevant role. In conclusion, perivascular mesenteric innervation might contribute to reduce the vascular resistance observed in hyperthyroidism.


Assuntos
Peso Corporal/efeitos dos fármacos , Hipertireoidismo/genética , Óxido Nítrico Sintase/genética , Óxido Nítrico/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/crescimento & desenvolvimento , Animais , Peso Corporal/genética , Modelos Animais de Doenças , Estimulação Elétrica , Humanos , Hipertireoidismo/metabolismo , Hipertireoidismo/patologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/crescimento & desenvolvimento , Veias Mesentéricas/efeitos dos fármacos , Veias Mesentéricas/crescimento & desenvolvimento , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Ratos , Ratos Wistar , Tiroxina/farmacologia , Vasoconstrição/genética
18.
Funct Integr Genomics ; 21(1): 113-124, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33404913

RESUMO

Nandan-Yao chicken is a Chinese native chicken with lower fat deposition and better meat quality. Fat deposition is a quite complex and important economic trait. However, its molecular mechanism is still unknown in chickens. In the current study, Nandan-Yao chicken was divided into two groups based on the rate of abdominal fat at 120 days old, namely the high-fat group and low-fat group. The total RNAs were isolated and sequenced by RNA sequencing (RNA-seq). After quality control, we gained 1222, 902, 784, 624, and 736 differentially expressed genes (DEGs) in abdominal fat, back skin, liver, pectoral muscle, and leg muscle, respectively. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that significantly enriched GO term and KEGG signaling pathway mainly involved cytosolic ribosome, growth development, PPAR signaling pathway, Wnt signaling pathway, and linoleic acid metabolism in abdominal fat, back skin, and liver. While in pectoral muscle and leg muscle, it is mainly enriched in phosphatidylinositol signaling system, adrenergic signaling in cardiomyocytes, cytosolic ribosome, and cytosolic part. Sixteen genes were differentially expressed in all five tissues. Among them, PLA2G4A and RPS4Y1 might be the key regulators for fat deposition in Nandan-Yao chicken. The protein-protein interaction (PPI) network analysis of DEGs showed that PCK1 was the most notable genes. The findings in the current study will help to understand the regulation mechanism of abdominal fat and intramuscular fat in Nandan-Yao chicken and provide a theoretical basis for Chinese local chicken breeding.


Assuntos
Tecido Adiposo/metabolismo , Galinhas/genética , Mapas de Interação de Proteínas , Transcriptoma , Tecido Adiposo/crescimento & desenvolvimento , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Via de Sinalização Wnt
19.
Clin Nutr ; 40(3): 1289-1295, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32896446

RESUMO

BACKGROUND & AIMS: The rise in the prevalence of childhood obesity has increased the demand for accurately evaluating body fatness in pediatric population. The aim of this study was to provide a series of sex- and age-specific body fat reference centiles for evaluating total body fat development and fat distribution in Chinese children and adolescents using dual-energy x-ray absorptiometry (DXA). METHODS: A nationwide sample of Chinese children and adolescents aged 3-18 years (n = 12,790) was drawn from a cross-sectional survey of the China Child and Adolescent Cardiovascular Health study (2013-2019). Fat measurements, including total fat mass index (FMI), total body fat percentage (BF%), regional FMI, trunk to leg (T/L) fat ratio and android to gynoid (A/G) fat ratio, were derived from whole body DXA scans. Sex- and age-specific centiles were estimated using the lambda-mu-sigma method and then compared with values derived from the US National Health and Nutrition Examination Survey (1999-2004) and Korean National Health and Nutrition Examination Survey (2008-2011). RESULTS: During early childhood, almost all body fat parameters decreased with age, except an increase in A/G ratio. After 7 years onward, drastic upward trends of total FMI and BF% were exhibited in boys till 10 years, followed by opposite downward trends during 11-14 years; while sustained increase of FMI was shown in girls across ages accompanied by relatively constant BF% levels. Meanwhile, steady increases were noticed for A/G ratio and T/L ratio, which were more pronounced in boys. In addition, the proposed body fat references were much lower than the US but similar to Koreans despite of subtle differences. CONCLUSIONS: This is the first study to present a set of DXA-based body fat reference for Chinese children and adolescents aged 3-18 years. The new reference provides clinicians and researchers a useful tool for assessing body fat development and distribution patterns throughout early childhood and adolescence.


Assuntos
Absorciometria de Fóton , Tecido Adiposo/crescimento & desenvolvimento , Composição Corporal , Tecido Adiposo/fisiologia , Adolescente , Fatores Etários , Antropometria , Criança , Pré-Escolar , China/epidemiologia , Estudos Transversais , Feminino , Humanos , Masculino , Inquéritos Nutricionais , Obesidade Pediátrica/epidemiologia , Valores de Referência , República da Coreia , Fatores Sexuais , Estados Unidos
20.
Obes Rev ; 22(2): e13124, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32935469

RESUMO

Obesity, defined as excessive fat accumulation, is strongly associated with metabolic diseases and cancer, and its prevalence is rising worldwide. Thus, understanding the molecular mechanism of adipogenesis is of fundamental significance. Epigenetic modifications play important roles in regulating adipogenesis. N6 -methyladenosine (m6 A), the most prevalent and abundant mRNA modification in eukaryotic cells, modulates multiple aspects of RNA metabolism, including mRNA stability, translation, splicing and export. Recent studies indicate that m6 A methylation plays important roles in modulating gene expression and signal pathways in various physiologic processes and diseases. Notably, the significant function and regulatory mechanisms of m6 A in adipogenesis are now emerging. In this review, we summarize recent studies that elucidate the vital roles of m6 A modifications in regulating adipogenesis and adipose tissue expansion. Furthermore, we highlight the nutritional regulation of m6 A methylation and adipogenesis, which may prove a novel therapeutic strategy to fight against obesity.


Assuntos
Adenosina/análogos & derivados , Adipogenia , Tecido Adiposo/crescimento & desenvolvimento , Epigênese Genética , Processamento Pós-Transcricional do RNA , Adenosina/química , Adipogenia/genética , Humanos , Metilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...